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Abstract. Stochastic resonance(SR) in a FitzHugh-Nagumo neuron model is investigated based on a dy-
namic mutual information (DMI) between the input and the corresponding output signals. The DMI is
expressed in terms of the (cross)power spectra of the input and output time series. Both stochastic-periodic
and aperiodic SR are treated based on the DMI and our results are in good accord with the SR measured
by the signal to noise ratio(SNR) for the case of the stochastic-periodic input and the power norm for the
case of the aperiodic input.

PACS. 02.50.Ey Stochastic processes – 87.19.La Neuroscience

1 Introduction

Stochastic resonance(SR), which denotes the effect in
which the transmission of input signal information is
enhanced by adding random noise in some nonlinear
systems, has gathered much attention in the field of
stochastic systems [1,2]. SR was first reported for a
bistable system under weak periodic perturbation, a
model proposed to discuss the glacial period of earth [3].
Since then it is extended to many nonlinear systems such
as a simple threshold system [4] and a monostable ex-
citable system like neurons [5], to mention a few.

SR was originally measured by a signal-to-noise ra-
tio(SNR) and was characterized as a maximum of the SNR
at non-zero noise intensity [3]. Here the SNR is defined as
the ratio of the weight of the δ peak of the power spectrum
of the output signal at the characteristic input frequency
ω0 to the background intensity of the power spectrum at
the same frequency [3,6]. When the input signal has not
such a characteristic frequency, one can not resort to the
SNR just defined above and other measures for SR, such
as the power norm which quantifies similarity between the
input and output signals, have been proposed and applied
in the field of excitable systems [7].

In view of the significance of these stochastic sys-
tems as information processing devices, mutual informa-
tion (MI) [8–10] between the input and output(response)

a e-mail: munakata@amp.i.kyoto-u.ac.jp

signals has also been playing important roles. The pur-
pose of this report is to study SR in a FitzHugh-Nagumo
(FHN) neuron model from a unified viewpoint of dynamic
mutual information (DMI).

First we introduce in Section 2 the DMI which is
expressed concisely, under a Gaussian approximation, in
terms of the auto- and cross-correlation functions of both
input and output signals. This DMI is then applied to a
FitzHugh-Nagumo (FHN) neuron in Section 3 to discuss
both periodic and aperiodic SR from a unified viewpoint.
Final section is devoted to a summary.

2 Dynamic mutual information (DMI)

MI between the input I = (i1, ..., iN) and output O =
(o1, ..., oN ) signals M(I : O) can be simply represented
as [8]

M(I : O) ≡ H(I) − H(I|O) = H(O) − H(O|I)
= H(I) + H(O) − H(I, O), (1)

where H(I), the Shannon entropy, quantifies uncertainty
in input signals and H(I|O), the conditional entropy,
quantifies (remaining) uncertainty in input signals once
output signals are given [8]. H(O), H(O|I) and H(I, O)
have similar meaning and the equalities in (1) are simply
derived from the definitions for these quantities to be given
below. M(I : O) thus measures information flow and it is
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expected that this quantity would be usefully applied for
SR especially for neuronal systems which are supposed to
transmit information efficiently.

We denote the distribution function of input(output)
signals I(O) by pI(I)(pO(O)) and introduce the condi-
tional distribution function pI|O(I|O) of I when O is
given. In terms of these functions we define [8]

H(I) = −
∑

I

pI(I) ln pI(I),

H(I|O) = −
∑

O

pO(O)
∑

I

pI|O(I|O) ln pI|O(I |O). (2)

Similarly H(I, O) is expressed in terms of the joint distri-
bution pI,O(I, O) as

H(I, O) = −
∑

O

∑

I

pI,O(I, O) ln pI,O(I, O). (3)

Recenly we classified an information processing system
into systems with and without memory [10]. When on in
O = (o1, .., on, .., oN ) depends on only in in I = (i1, .., iN ),
the system is without memory and we studied MI based
on an approximation of one-body or static MI for a simple
threshold system [10]. When system dynamics is described
by a differential equation, such as the FitzHugh-Nagumo
(FHN) equation, see Section 3, the system is in general
with memory in the sense that on depends on in, in−1, ..
and one must take full dynamical information in I and/or
O into account.

In numerically calculating M(I : O) one must first
obtain the probability distribution functions in (2) and
(3) and this is a formidable task. This is because we
need generally a lot of data points in order to calculate
a smooth distribution function from the data. Neiman
et al. [11] calculated numerically some entropic quanti-
ties in their studies on stochastic Schmitt trigger. Bulsara
and Zador [9] used the interspike interval (ISI) distribu-
tion function combined with Monte Carlo calculations,
which tactfully reduced numerical calculations. Heneghan
et al. [12] also made use of the rate of information transfer
under the Gaussian approximation for the input noise in
their study of aperiodic SR. M(I : O) for N = 1 is widely
used for simple threshold systems and also for continuous
systems after quantization of signals [13].

Difficulties associated with numerical calculations of
M(I : O) are greatly reduced once one employs a
Gaussian approximation for both the input and output
processes and the remaining part of this section is de-
voted to a derivation of the formula (12) below, which
will be used in Sect.3. The result (12) is nontrivial, not
widely known, and useful (as shown in Sect. 3), so that
the derivation thereof is included here also to make this
paper self-contained. The calculations are along with a
similar line in partial integration in path integrals for lin-
ear quantum systems [14].

Denoting by ∆ the sampling time, we take N sample
points I ≡ {i1 = i(t = ∆), ..., iN = i(t = N∆)} from
an input stochastic process i(t). With the covariance ma-
trix A, the element of which is expressed in terms of the

stationary correlation function cI,I(t) as Aj,k = 〈ijik〉 ≡
cI,I(|j − k|∆), the distribution function pI(I) takes the
form

pI(I) = (2π)−N/2|A|−1/2 exp[−(1/2)IT · A−1 · I], (4)

where |A| is a determinant of A and T on the column
vector I denotes the transpose operation.

With use of an orthogonal transformation to the ma-
trix A, we can easily express H(I) in terms of the real
eigenvalues λI

j (j = 1, .., N) of A as

H(I)/N = (1 + ln(2π) + ln λI)/2, (5)

where

ln λI ≡
⎛

⎝
∑

j

ln λI
j

⎞

⎠ /N. (6)

H(I)/N may be considered to represent an entropy pro-
duction rate per time ∆ for the input signal. If we denote
the covariance matrix of the output O by B and also the
covariance matrix of the 2N dimensional vector (I , O) by
Z, we have a simple expression for M(I : O) from (1) and
(2) as

M(I : O)/N = [ln λI + ln λO]/2 − ln λI,O, (7)

where
ln λI,O ≡ (

∑

j

ln λI,O
j )/(2N), (8)

with λI,O
j (j = 1, .., 2N) denoting the eigenvalues of the

matrix Z.
The final step is to relate the eigenvalues to the power

spectra of time correlation functions which gives the ma-
trix elements of various covariance matrices introduced
above. Since the elements Aj,k of the matrix A depends
on the difference |j−k| only, we notice after Fourier trans-
formation that the eigenvalues is given by λI

j =
∑

k

cI,I(k) exp(ikωj) ≡ CI,I(ωj) with ωj taking the values
ωj = 2πj/N(j = 0,±1, .. ± N/2). λO

j is similarly given
in terms of the spectrum CO,O(ωj). As to the eigenvalues
of the 2N × 2N matrix Z, we notice, employing a sim-
ilar Fourier transformation approach as for A, that the
eigenvalue λ(ω) satisfies the linear equation

CI,I(ω)I(ω) + CI,O(ω)O(ω) = λ(ω)I(ω), (9)

CO,I(ω)I(ω) + CO,O(ω)O(ω) = λ(ω)O(ω), (10)

with I(ω) ≡ ∑
k ik exp(iωk) and similarly for O(ω). This

situation is similar to the problem of eigenfrequency for
a two-component harmonic lattice. Thus we have two
branches

λ±(ω) = [CI,I(ω) + CO,O(ω) ±
√

D]/2, (11)

with D = (CI,I(ω) − CO,O(ω))2 + 4|CI,O(ω)|2.
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Collecting the results above we have a simple inte-
gral formula for the mutual information rate m(I : O) ≡
MI(I : O)/(N∆) of the form

m(I : O) = (1/2)
∫ f0

−f0

df [ln(CI,I(f))

+ ln(CO,O(f) − ln(λ+(f)) − ln(λ−(f))]

= (−1/2)
∫ f0

−f0

df ln(1 − |CI,O(f)|2/[CI,I(f)CO,O(f)]),

(12)

where f0 denotes the Nyquist frequency (1/2∆) with f =
ω/(2π). Here we used the relation λ+(f)λ−(f) = CI,I(f)
CO,O(f)−|CI,O(f)|2. We first remark that m(I : O) = 0 if
the cross correlation or cross spectrum is zero as it should
be [8]. Secondly in the subthreshold SR, where the in-
put signal is small compared with (Gaussian) noise as
studied here, the Gaussian approximation seems to be a
reasonable zeroth-order approximation [9] although it re-
mains to be quantitatively checked. Final remark is about
SR in biological systems [15,16]. (12) has been used un-
der a linear approximation [16] ln(1 − K) � −K where
K ≡ |CI,O(f)|2/[CI,I(f)CO,O(f)]. Under this approxima-
tion m(I : O) is linear in K. We will instead employ the
full expression (12) based on detailed numerical experi-
ments for the FHN system (13).

3 SR in a FitzHugh-Nagumo(FHN) neuron

As a concrete system to be studied with the DMI, (12),
we take the FHN neuron, first studied in detail in relation
to SR in [17], whose dynamics is described after some
reduction by [7,9,11]

εdv/dt = −v(v2 − 1/4)− w + a + S(t) + ξ(t),
dw/dt = v − w, (13)

where S(t) denotes the input signal and ξ(t) the Gaussian
white noise with

〈ξ(t)ξ(t′)〉 = 2Dδ(t − t′). (14)

When the parameter a is larger than aT = −5/(12
√

3) �
−0.24, (13) has a limit cycle solution in the absence of the
input signal and noise. We are mainly interested in a sub-
threshold situation a < aT and take a = −0.3 in all our
subsequent calculations and ε =0.005. v(t) corresponds to
a fast voltage variable and w(t) to a slow recovery vari-
able [7].

For SR to a periodic signal S(t) [3,6], one often takes

Sp(t) = γ sin(ω0t). (15)
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Fig. 1. Semi-log plot of the power spectrum CO,O(f) of the
FHN model for two different η, η = 0.05 (a solid curve) and
η = 0.2 (a dashed curve) (Ds = 10−3, f0 = 2π, D = 1.5× 10−4

and γ = 0.01).

Since we take the DMI as a measure for SR, we consider
the stochastic-periodic S̃(t) described by the Langevin
equation

d2S̃/dt2 = −ω2
0S̃ − ηdS̃/dt + ξs(t),

〈ξs(t)〉 = 0, < ξs(t)ξs(t′)〉 = 2Dsδ(t − t′). (16)

In the limit η → 0 and Ds → 0, we recover the sinusoidal
signal (15). Since the variance of the stationary Gaussian
process S̃(t) is given by Ds/(ηω2

0), we may consider that
the signal defined by

S(t) = C0S̃(t), C0 = γω0

√
η/(2Ds), (17)

has a similar amplitude to Sp(t), (15), since the time av-
erage of the square of the input signal S(t) becomes γ2/2
as for the periodic signal, (15). Hereafter we set ω0 = 1.

For SR to aperiodic signals, we first introduce the
Ornstein-Uhlenbeck process S̃(t) described by

dS̃(t)/dt = −ηS̃(t) + ξs(t), (18)

with the noise ξs(t) having the same properties as in (16).
In this case we express , from a similar argument as above,
our input signal to be

S(t) = C1S̃(t), C1 = γ
√

η/(2Ds). (19)

In normalizing the amplitude of the signal S(t), we choose
γ = 0.01, which ensures that our signal is small and sub-
threshold.

We consider first the case of a stochastic-periodic in-
put (17) to the FHN model. In Figure 1 the power spectra
of the output signal V (t) ≡ Θ[v(t)] with Θ(x) = 1(0) for
x > 0 (x ≤ 0) are plotted for two different η, whose inverse
measures coherence of the input signal S(t). As expected
the peak around f = f0 is sharper for the smaller damp-
ing η = 0.05 compared with the larger damping η = 0.2.
In this stochastic-periodic case, the SNR could be defined
either by R1 ≡ CO,O(f0)/CNB

O,O(f0) [1], with CNB
O,O(f0) de-

noting the noise background at f = f0 of CO,O(f) or by
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Fig. 2. MI rate m(I : O)(a) and SNR, R1(b) as a function of log10 D for four different η′s.(η = 0.001, 0.005, 0.01 and 0.05 from
below for Figure 2a and from above for Figure 2b. with Ds = 10−3, f0 = 2π and γ = 0.01.
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Fig. 3. MI rate m(I : O) (3a. left) and the power norm P0 × 103, equation (20)(3b. right) as a function of log10 D for four
different η′s(η = 0.001, 0.005, 0.01 and 0.05) from below for both 3a. and 3b. We put Ds = 10−3 and γ = 0.01.

R2 ≡ CO,O(f0)/CO,O(f1) with f1 denoting the frequency
at which CO,O(f) takes its local minimum between f = 0
and f0. As the third candidate for the SNR, we also consid-
ered R3 = A/CNB

O,O(f0) where A denotes the area of the
(nearly)triangle region around f0 above the background
noise level.

In Figure 2a we show m(I : O), (12), as a function
of the noise intensity D, (14), for four different values of
η. We observe a peak of m(I : O) at some intermediate
noise strength. Similar SR behavior is also observed in
Figure 2b, which depicts the SNR R1 as a function of the
noise intensity D. It is noted that R2 and R3 show similar
SR behavior as R1.

One point is worth noting here. From Figure 2a it is
seen that the larger the damping η is, the larger m(I : O)
is and this tendency is opposite to the one shown in Fig-
ure 2b for the SNR. We interpret this as follows: The in-
put signal carries its information in passing through the

FHN neuron. When η is small, the signal is rather coher-
ent and structureless and in this sense we may consider
that it carries small amount of information. Consequently
m(I : O) for a small η inevitably becomes relatively small
compared with the case of larger η. In fact, the input
entropy rate (5), which is simply expressed in terms of
CI,I(f) as (12), has been calculated to see that it mono-
tonically increases as a function of η. Thus if we consider
a normalized quantity M̃(I : O) ≡ M(I : O)/H(O) in-
stead of M(I : O), this behaves as a function of η like
R1 ≡ CO,O(f0)/CNB

O,O(f0) [1], which is normalized by the
noise background CNB

O,O(f0).
Now we turn to aperiodic SR where the input sig-

nal is produced by (18) and (19). In Figure 3a is plotted
m(I : O) as a function of D. Here we also observe system-
atic behavior of m(I : O) as in the case of a stochastic-
periodic SR. That is, from a MI viewpoint there exists
SR for the FHN model. Heretofore aperiodic SR has been
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studied mainly based on a measure called the power norm
P0 defined by [7]

P0 ≡ 〈S(t)(R(t) − R(t))〉, (20)

where R(t) is the mean firing rate constructed from the
signal v(t) and 〈...〉 and the overbar denotes an ensemble
average and time average, respectively. We show P0 in
Figure 3b and notice that P0 also show its peak around
a similar noise intensity. Since P0 is, like M(I : O), not
normalized by a quantity related to noise or input signal
intensity, we have no inversion ordering between m(I : O)
and P0 with respect to η.

4 Summary

In this report we discussed SR in the FHN neuron model,
(13), based on the DMI under a Gaussian approxima-
tion, (12). The DMI enabled us to consider SR for both
(stochastic) periodic input signals, (16), and aperiodic in-
put signals, (18), on equal footing. As to SR to periodic(or
aperiodic) input signals, DMI turned out to be a good
measure to estimate performance of the FHN model like
the SNR R1( or the power norm P0).
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